1	THE STATE OF NEW HAMPSHIRE
2	BEFORE THE
3	NEW HAMPSHIRE
4	SITE EVALUATION COMMITTEE
5	
6	DOCKET NO.2008-04
7	
8	RE: APPLICATION OF GRANITE RELIABLE POWER, LLC
9	FOR CERTIFICATE OF SITE AND FACILITY
10	FOR GRANITE RELIABLE POWER WINDPARK
11	IN COOS COUNTY
12	
13	
14	
15	
16	
17	
18	SUPPLEMENTAL TESTIMONY OF DR. GARY R. SANFORD ON BEHALF OF
19	COUNSEL FOR THE PUBLIC
20	
21	FEBRUARY 2009
22	
23	
24	
25	
26	I, Gary R. Sanford, Ph.D., do hereby state under the pains and penalties of
27	perjury that the following attached testimony is true.
28	
29	
30 31	
32	$\mathcal{G}_{\mathcal{I}}$
33	Jang Gary R. Sanford, Ph.D.
33 ₋	Jany Galy R. Salliolu, Pli.D.
35	
36	,
30	

1	On page 9 line 1-3 of my December 2008 testimony I noted that there may be
2	additional measures that can be taken to further minimize impacts to wetlands. Among
3	these potential measures are steeper side slopes leading to proposed wetland impact
4	areas, use of hard engineering measures, realignment of roadway sections, and modifying
5	the geometry of areas to be altered. After reviewing the latest plan set provided to me by
6	Horizons Engineering on February 17, 2009 ("February 2009 Plan Set"), I have identified
7	a number of examples where further impact reduction could potentially be accomplished.
8	These examples do not exhaust the number of opportunities available to reduce impacts,
9	but are identified in order to emphasize the availability of such opportunities.
10	The following examples currently have proposed slopes of 1 ½ to 1. Steeper
11	slopes, including vertical walls, must be appropriately evaluated and designed by the
12	project engineer and hence these examples represent only a limited number of potential
13	opportunities for impact minimization. In my opinion a more exhaustive review of the
14	February 2009 Plan Set would uncover many more such opportunities for additional
15	wetlands impact avoidance and minimization.
16	
17	Example 1 - Impact Area 102-1. Because of the length of proposed impact, for every
18	foot the slope width is reduced there would be a corresponding reduction in impact of
19	150 s. f.
20	
21	Example 2 - Impact Area 105-2. Because of the length of proposed impact on both sides
22	of the proposed road, for every foot the slope width is reduced there would be a
23	corresponding reduction in impact of 150 s. f.

1	
2	Example 3 - Impact Area 105-3. Because of the length of proposed impact on both sides
3	of the proposed road, for every foot the slope width is reduced there would be a
4	corresponding reduction in impact of 120 s. f.
5	
6	Example 4 - Impact Area 105-5 West Side of Proposed Road. Because of the length of
7	proposed impact, for every foot the slope width is reduced there would be a
8	corresponding reduction in impact of 40 s. f.
9	
10	Example 5 - Impact Area 105-6. Because of the length of proposed impact, for every
11	foot the slope width is reduced there would be a corresponding reduction in impact of
12	110 s. f.
13	
14	Example 6 – Impact Area 105-7. Because of the length of proposed impact, for every
15	foot the slope width is reduced there would be a corresponding reduction in impact of 80
16	s. f.
17	
18	Example 7 - Impact Area 105-8 East Side of Proposed Road. Because of the length of
19	proposed impact, for every foot the slope width is reduced there would be a
20	corresponding reduction in impact of 40 s. f.
21	

1	Example 8 - Impact Area 105-11. Because of the length of proposed impact, for every
2	foot the slope width is reduced there would be a corresponding reduction in impact of
3	290 s. f.
4	
5	Example 9 – Impact Area 120-1. Because of the length of proposed impact, for every
6	foot the slope width is reduced there would be a corresponding reduction in impact of
7	200 s. f.
8	
9	Example 10 – Impact Area 123-5. Because of the length of proposed impact, for every
10	foot the slope width is reduced there would be a corresponding reduction in impact of 60
11	s. f.
12	
13	Example 11 – Impact Area 129-5. Because of the length of proposed impact, for every
14	foot the slope width is reduced there would be a corresponding reduction in impact of 80
15	s. f.
16	
17	Example 12– Impact Area 129-6. Because of the length of proposed impact, for every
18	foot the slope width is reduced there would be a corresponding reduction in impact of 70
19	s. f.
20	
21	Because of the length of impacts to wetlands, a small reduction in slope width can
22	result in a large reduction in impacts. If slope widths in all of the above examples were
23	to be reduced by only one foot, there would be a corresponding reduction in impacts of

- 1 1,390 s. f. The certificate should be conditioned upon the Applicant going through the
- 2 plans, identifying all such opportunities and conducting an appropriate analysis regarding
- 3 the feasibility of making additional wetlands impact avoidance and minimization,
- 4 providing the Committee a report concerning that analysis, and making changes to the
- 5 plans and design to implement those changes that are feasible.
- At a meeting with the Applicant and its consultants on February 17, 2009, we
- 7 discussed an important opportunity for further impact avoidance and minimization. In
- 8 many instances, particularly at higher elevation impact locations, bedrock may be very
- 9 close to the surface. Because the Applicant has not done a geotechnical survey of much
- of the proposed road route in the high elevation areas it is uncertain the extent to which
- the project will need to impact wetlands with sloping cuts. Some of these areas have
- 12 planned sloping cuts where the geotechnical survey could reveal that vertical cuts through
- bed rock could be employed. I would recommend that a condition to the certificate be
 - included which would require that the Applicant utilize the results of the geotechnical
- survey in high elevations to redesign the road to eliminate sloping cuts into wetlands
- whenever possible.

14

- Finally, based upon my review of the proposed wetlands, water quality and terrain
- alteration permits, I would recommend the following additional conditions be
- 19 incorporated:
- 20 1. The new ditch systems be considered as mitigation for the impacted ditches
- and that they have the same monitoring conditions that DES imposed on the vernal
- 22 pool creations.
- 23 2. The wording for the vernal pool creations should be changed to allow for "up

- to 8" vernal pools. It may be that creation of a smaller number of vernal pools (that
- 2 total 3,600 sq.ft.) is more appropriate.
- 3 3. A condition should be included that requires monitoring of the hydrology of
- 4 the vernal pools and remediation within one year if the vernal pools do not hold water
- 5 for a minimum of two months during the vernal pool season.
- 6 4. Add a condition that prohibits in-stream work during high flow conditions.
- 7 5. Add a condition that requires the applicant to implement additional measures
- 8 to lessen the amount of wetland impacts (such as retaining walls where practical
- 9 and/or modifying the layout of the roadway and pads) if location specific soils,
- 10 grading or geotechnical information allows.
- When the proposed road cuts through a sloping wetland a cut face will be
- created that may bleed ground and surface water from the up gradient portion of the
- wetland. In order to avoid disrupting the flow of ground and surface water to the
- down gradient portion of the wetland a means of transporting this water under the
- road is required. Add a condition requiring the use of a "rock sandwich" wherever
- 16 needed to maintain groundwater flow under the proposed road to down gradient
- wetlands.

18

19

20

21